Plants accumulate human beneficial metabolites such as amino acids, flavonoids and sulfur-containing metabolites (S-metabolites) with a wide range of biological activities related to antioxidation, platelet aggregation inhibition, and anti-inflammatory benefit. Profiling methods of S-metabolites with high accuracy and throughput are being required for efficient phytochemical functional genomics and crop breeding. Here, we describe the S-metabolite-targeted analysis using liquid chromatography (LC)-fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) with U-13C-labeled onion bulb. Natural abundance of 32S (32.065073 Da) and its isotope 34S (33.067868 Da) is 95.02% and 4.21%, respectively. These facts are obviously reflected on molecular ion peaks of S-metabolites. Thus, the isotope 15N-substituted C13H21N3O6S2 isotope 13C-labeled onion bulb was purchased from parents of higher-yielding hybrids and JP-US, JST Research Program (SICORP) for JP-NZ Japan Advanced Plant Science Network.

Summary

- **Health-promoting crops**
 - Genomics
 - Transcriptomics
 - Next-generation sequencing etc.
 - AGRc

- **Phytochemical genomics**
 - Crop breeding
 - Diverse population of plants/chromosomes
 - GS/GM

- **Metabolomics**
 - LC-MS etc
 - Sulfur-containing metabolite-targeted analysis using liquid chromatography-mass spectrometry highly accurate analysis
 - MS/MS
 - Hexapol ion transfer

Peak picking of S-metabolite

FT-ICR-MS (Solarix 7.0 T)

Profiling of S-metabolites using LC-FT-MS in non-labeled and 13C-labeled onion bulb

Conclusion

- Onion bulb includes quite rare S-metabolites which have strong anti-inflammatory activity.
- Strategy of biomarker screening will be changed by this method with approaches of natural products chemistry

Acknowledgements

Strategic International Collaborative Research Program (SICORP) for JP-NZ and JP-US, JST

Japan Advanced Plant Science Network

Table of S-metabolites

<table>
<thead>
<tr>
<th>S-metabolite</th>
<th>Elemental Composition</th>
<th>MS/MS Analysis</th>
<th>Characterization</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-propylmercapto glutathione</td>
<td>C,H,N,O,S</td>
<td>MS/MS</td>
<td>Comparison of peak pattern</td>
</tr>
<tr>
<td>C13H21N3O6S2</td>
<td></td>
<td></td>
<td>Determination of elemental composition</td>
</tr>
<tr>
<td>13C-labeled C13H21N3O6S2</td>
<td></td>
<td></td>
<td>MS/MS analysis</td>
</tr>
</tbody>
</table>

- C13H21N3O6S2
- Comparison of peak pattern
- Determination of elemental composition
- MS/MS analysis

Image of picking S-metabolite peaks

FT-ICR-MS (Solarix 7.0 T)

EICs of 6 representative S-metabolites

- S-propylmercapto glutathione
- S-propylmercapto glutathione (S-proglutathione)
- 13C-labeled S-propylmercapto glutathione
- C13H21N3O6S2
- 1 elemental composition
- S-peak picking
- C,H,N,O,S < 1 mDa
- S-peak picking
- C13H21N3O6S2
- C13H21N3O6S2
- S-metabolite peaks

Image of picking S-metabolite peaks

FT-ICR-MS (Solarix 7.0 T)

EICs of 6 representative S-metabolites

- S-propylmercapto glutathione
- S-propylmercapto glutathione (S-proglutathione)
- 13C-labeled S-propylmercapto glutathione
- C13H21N3O6S2
- 1 elemental composition
- S-peak picking
- C,H,N,O,S < 1 mDa
- S-peak picking
- C13H21N3O6S2
- C13H21N3O6S2
- S-metabolite peaks

Image of picking S-metabolite peaks

FT-ICR-MS (Solarix 7.0 T)

EICs of 6 representative S-metabolites

- S-propylmercapto glutathione
- S-propylmercapto glutathione (S-proglutathione)
- 13C-labeled S-propylmercapto glutathione
- C13H21N3O6S2
- 1 elemental composition
- S-peak picking
- C,H,N,O,S < 1 mDa
- S-peak picking
- C13H21N3O6S2
- C13H21N3O6S2
- S-metabolite peaks